Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Hỏi đáp Toán lớp 9


\(\sqrt{4x^2-2x+\frac{1}{4}}=4x^3+8x-x^2-2\)

\(\Leftrightarrow-\frac{1}{2}|4x-1|=\left(4x-1\right)\left(x^2+2\right)\)

Do VT \(\ge0\)và x2 + 2 > 0 với mọi x nên \(4x-1\ge0\). Khi đó :

\(\Leftrightarrow\frac{1}{2}.\left(4x-1\right)=\left(4x-1\right)\left(x^2+2\right)\)

\(\Leftrightarrow\left(4x-1\right).\left(x^2+\frac{3}{2}\right)=0\)

\(\Leftrightarrow4x-1=0\)( vì \(x^2+\frac{3}{2}>0\forall x\))

\(\Leftrightarrow x=\frac{1}{4}\)

Vậy ; \(x=\frac{1}{4}\)là nghiệm duy nhất của PT

Đọc tiếp...

\(ĐKXĐ:x\inℝ\)

\(\sqrt{4x^2-2x+\frac{1}{4}}=4x^3+8x-x^2-2\)

\(\Leftrightarrow\sqrt{\frac{1}{4}.\left(16x^2-8x+1\right)}=4x\left(x^2+2\right)-\left(x^2+2\right)\)

\(\Leftrightarrow\sqrt{\frac{1}{4}.\left(4x-1\right)^2}=\left(4x-1\right)\left(x^2+2\right)\)

\(\Leftrightarrow\frac{1}{2}.\left|4x-1\right|=\left(4x-1\right)\left(x^2+2\right)\)(1)

Vì \(\left|4x-1\right|\ge0\forall x\)\(\Rightarrow\frac{1}{2}.\left|4x-1\right|\ge0\forall x\)

\(\Rightarrow\)Để phương trình (1) có nghiệm thì \(\left(4x-1\right)\left(x^2+2\right)\ge0\)

Vì \(x^2+2>0\)\(\Rightarrow4x-1\ge0\)\(\Leftrightarrow4x\ge1\)\(\Leftrightarrow x\ge\frac{1}{4}\)

\(\Rightarrow\left|4x-1\right|=4x-1\)

Từ (1) \(\Rightarrow\frac{1}{2}.\left(4x-1\right)=\left(4x-1\right)\left(x^2+2\right)\)

\(\Leftrightarrow\left(4x-1\right)\left(x^2+2\right)-\frac{1}{2}\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(x^2+\frac{3}{2}\right)=0\)

Vì \(x^2+\frac{3}{2}>0\forall x\)\(\Rightarrow4x-1=0\)\(\Leftrightarrow4x=1\)\(\Leftrightarrow x=\frac{1}{4}\)( thỏa mãn )

Vậy phương trình có nghiệm duy nhất : \(x=\frac{1}{4}\)

Đọc tiếp...

x2+x+4 căn x+1=4

Đọc tiếp...

Được cập nhật 25 tháng 1 lúc 8:30

0

Ta có: \(xy-5=2y^2\)            \(\left(ĐK:x,y\inℤ\right)\)

    \(\Leftrightarrow xy-2y^2=5\)

    \(\Leftrightarrow y.\left(x-2y\right)=5=\left(-1\right).\left(-5\right)=1.5\)

\(\hept{\begin{cases}y=-1\\x-2y=-5\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-7\\y=-1\end{cases}}\)\(\left(TM\right)\)

\(\hept{\begin{cases}y=-5\\x-2y=-1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-11\\y=-5\end{cases}}\)\(\left(TM\right)\)

\(\hept{\begin{cases}y=1\\x-2y=5\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)\(\left(TM\right)\)

\(\hept{\begin{cases}y=5\\x-2y=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=11\\y=5\end{cases}}\)\(\left(TM\right)\)

Vậy \(\left(x;y\right)\in\left\{\left(-7;-1\right),\left(-11;-5\right),\left(7;1\right),\left(11;5\right)\right\}\)

Đọc tiếp...

\(xy-5=2y^2\) \(\Leftrightarrow xy-2y^2=5\)\(\Leftrightarrow y\left(x-2y\right)=5\)

Vì \(x,y\inℤ\)\(\Rightarrow y\)và \(x-2y\)là ước của 5

Lập bảng giá trị ta có

\(y\)\(-5\)\(-1\)\(1\)\(5\)
\(x-2y\)\(-1\)\(-5\)\(5\)\(1\)
\(x\)\(-11\)\(-7\)\(7\)\(11\)

Vậy nghiệm của phương trình là \(\left(x;y\right)=\left(-11;-5\right),\left(-7;-1\right),\left(7;1\right),\left(11;5\right)\)

Đọc tiếp...

Bài này căng đấy =))

C E B A D O I H

a) Do AB là tiếp tuyến của (O) với B là tiếp điểm (gt)

nên : \(AB\perp OB\)( tc tiếp tuyến )

\(\Rightarrow\widehat{ABO}=90^o\)(1)

Do H là trung điểm của dây DE (gt)

nên : \(OH\perp DE\)( liên hệ giữa đường kính và dây )

\(\Rightarrow\widehat{AHO}=90^o\)(2)

- Xét tứ giác ABOH ta có :

+) \(\widehat{ABO}\)và  \(\widehat{AHO}\)là hai góc đối diện

+) \(\widehat{ABO}+\widehat{AHO}=90^o+90^o=190^o\)( do (1) và (2))

=> ABOH là tứ giác nội tiếp 

=> 4 điểm A , B , O , H thuộc cùng 1 đường tròn ( đpcm )

b) Ta có : +) \(\widehat{B_1}\)là góc giữa tia tiếp tuyến và dây cung chắn cung \(\widehat{BD}\)của (O)

+) \(\widehat{E_1}\)là góc nội tiếp chắn cung \(\widehat{BD}\)của (O)

\(\Rightarrow\widehat{B_1}=\widehat{E_1}=\frac{1}{2}sđ\widebat{BD}\)( tính chất )

Xét 2 tam giác : ABD và AEB có :

\(\widehat{B_1}=\widehat{E_1}\left(cmt\right)\)

\(\widehat{A}\)chung

\(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{BD}{EB}\)( tỉ số đồng dạng )

\(\Rightarrow\frac{AB}{AE}=\frac{BD}{BE}\left(đpcm\right)\)

Đọc tiếp...

P/s : câu a) có nhiều cách chứng minh khác nữa bạn nhé . Bạn làm cách này có thể hay hơn là vì những gì đã nói ở trên về phương pháp trình bày và đồng thời chứng minh cũng áp dụng được cho nhiều bài khác ( Khi \(\widehat{ABO}\)và \(\widehat{AHO}\)không phải là những góc 90 độ )

Đọc tiếp...

ta có 

\(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}\Rightarrow7x=2\left(2m-1\right)+3m+2=7m\Rightarrow x=m\Rightarrow y=m+1}\)

a. khi m=1 ta có hệ nghiệm là \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

b. để \(x^2+y^2=5\Leftrightarrow m^2+\left(m+1\right)^2=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

c.\(x-3y>0\Leftrightarrow m-3\left(m+1\right)>0\Leftrightarrow-2m-3>0\Leftrightarrow m< -\frac{3}{2}\)

Đọc tiếp...

\(A=\frac{1}{2}\sqrt{16.3}-3\frac{\sqrt{17.3}}{\sqrt{17}}+3\sqrt{\frac{4}{3}}\)

\(=2\sqrt{3}-3\sqrt{3}+3.2\frac{1}{\sqrt{3}}\)

\(=2\sqrt{3}-3\sqrt{3}+2\sqrt{3}=\sqrt{3}\)

Đọc tiếp...

\(A=\frac{1}{2}\sqrt{48}-\frac{3\sqrt{51}}{\sqrt{17}}+3\sqrt{1\frac{1}{3}}\)

\(=\sqrt{\frac{1}{4}.48}-3\sqrt{3}+3\sqrt{\frac{4}{3}}\)

\(=\sqrt{12}-3\sqrt{3}+3\sqrt{\frac{4}{3}}\)

\(=\sqrt{3.4}-3\sqrt{3}+3\sqrt{3.\frac{4}{9}}\)

\(=2\sqrt{3}-3\sqrt{3}+2\sqrt{3}=\sqrt{3}\)

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: