Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Hỏi đáp bài tập

Gọi G, H, K lần lượt là trung điểm của MA, MB, MC.

D, E lần lượt là trọng tâm của tam giác MBC, MAC.

\(\Rightarrow\frac{EK}{EA}=\frac{1}{2}=\frac{DK}{DB}\Rightarrow DE//AB\Rightarrow\frac{DE}{AB}=\frac{KE}{KA}=\frac{1}{3}\)

Chứng minh tương tự, ta có \(\frac{EF}{BC}=\frac{1}{3};\frac{FD}{AC}=\frac{1}{3}\)

Xét tam giác DEF và tam giác ABC: có \(\frac{DE}{AB}=\frac{EF}{BC}=\frac{FD}{CA}=\frac{1}{3}\Rightarrow\Delta DEF\)đồng dạng với \(\Delta ABC\left(c.c.c\right)\)

Đọc tiếp...

Cho M là điểm tùy ý nằm trong tam giác ABC; gọi D, E, F lần lượt là trọng tâm của tam giác ABC, MCA, MAB

CM: ΔDEF đồng dạng ΔABC

Đọc tiếp...

ai giúp Tony đi ! Chúc Tony học giỏi!!!!

Đọc tiếp...

Tài trợ


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: